Shrinkage Estimation of Common Breaks in Panel Data Models via Adaptive Group Fused Lasso∗
نویسندگان
چکیده
In this paper we consider estimation and inference of common breaks in panel data models via adaptive group fused lasso. We consider two approaches — penalized least squares (PLS) for firstdifferenced models without endogenous regressors, and penalized GMM (PGMM) for first-differenced models with endogeneity. We show that with probability tending to one both methods can correctly determine the unknown number of breaks and estimate the common break dates consistently. We obtain estimates of the regression coeffi cients via post Lasso and establish their asymptotic distributions. We also propose and validate a data-driven method to determine the tuning parameter used in the Lasso procedure. Monte Carlo simulations demonstrate that both the PLS and PGMM estimation methods work well in finite samples. We apply our PGMM method to study the effect of foreign direct investment (FDI) on economic growth using a panel of 88 countries and regions from 1973 to 2012 and find multiple breaks in the model. JEL Classification: C13, C23, C33, C51
منابع مشابه
Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملShrinkage Estimation of Regression Models with Multiple Structural Changes
In this paper we consider the problem of determining the number of structural changes in multiple linear regression models via group fused Lasso (least absolute shrinkage and selection operator). We show that with probability tending to one our method can correctly determine the unknown number of breaks and the estimated break dates are sufficiently close to the true break dates. We obtain esti...
متن کاملDifferenced-Based Double Shrinking in Partial Linear Models
Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...
متن کاملShrinkage estimation and variable selection in multiple regression models with random coefficient autoregressive errors
In this paper, we consider improved estimation strategies for the parameter vector in multiple regression models with first-order random coefficient autoregressive errors (RCAR(1)). We propose a shrinkage estimation strategy and implement variable selection methods such as lasso and adaptive lasso strategies. The simulation results reveal that the shrinkage estimators perform better than both l...
متن کاملAdaptive Elastic Net GMM Estimator with Many Invalid Moment Conditions: A Simultaneous Model and Moment Selection
This paper develops an adaptive elastic-net GMM estimator with many possibly invalid moment conditions. We allow for the number of structural parameters (p0) as well as the number of moment conditions increasing with the sample size (n). The new estimator conducts simultaneous model and moment selection. We estimate the structural parameters along with parameters associated with the invalid mom...
متن کامل